Fonctions exponentielles

Puissances non entières d'un nombre

1.1 Définition et propriétés

On rappelle que si $a \in \mathbb{R}$ et si n est un entier naturel, alors $a^n = \underbrace{a \times a \times \cdots \times a}_{n \text{ fois}}$.

On a également $a^{-n} = \frac{1}{a^n}$.

Rappelons les propriétés opératoires vues au collège (a et b désignent deux nombres réels et n désigne un entier relatif):

$$a^{n+m}=a^n\times a^m \qquad a^{n-m}=\frac{a^n}{a^m} \qquad \left(a^m\right)^n=a^{m\times n} \qquad \text{et} \quad (a\times b)^n=a^n\times b^n$$
 On a aussi $a^1=a$ et $a^0=1$
$$2 - 2 = 2 - 2 = 2 - 2$$
 On peut aussi calculer les puissances non entières d'un nombre **positif**. En pratique, on le fait à la calculatrice.

Exemples

- $2^{3,1} \simeq 10,556$ ($2^3 = 8, 2^4 = 16, 2^{3,1}$ est entre les deux);
- $0.4^{2,3} \simeq 0.1215$.

Toutes les règles de calcul sur les puissances fonctionnent avec les puissances non entières.

Signification de certaines puissances non entières

- Si a > 0, $a^{1/2} = \sqrt{a}$. En effet, \sqrt{a} est le nombre positif dont le carré vaut $a : \sqrt{a}^2 = a$. Or $(a^{1/2})^2 = a^{\frac{1}{2} \times 2} = a^1 = a$. $a^{1/2}$ est bien le nombre positif dont le carré vaut a, c'est-à-dire \sqrt{a} .
- De même, $a^{1/3}$ est la racine cubique de a (la racine cubique de a est le nombre dont le cube vaut a; par exemple, $\sqrt[3]{8} = 2 \text{ car } 2^3 = 8$; $\sqrt[3]{27} = 3 \text{ car } 3^3 = 27$; etc.), pour les mêmes raisons : $(a^{1/3})^3 = a^{\frac{1}{3} \times 3} = a^1 = a.$
- Plus généralement, $a^{1/n}$ est la racine n-ième de a.

Application: taux d'évolution moyen

Rappel Lors d'une évolution de t%, le coefficient multiplicateur est de $1 + \frac{t}{100}$. C'est le nombre par lequel on multiplie la quantité initiale pour obtenir la quantité finale.

Exemple Pour une augmentation de 25 %, le coefficient multiplicateur vaut 1,25 car $1 + \frac{25}{100} = 1,25$. Pour une baisse de 12 %, il vaut 0,88 car $1 - \frac{12}{100} = 1 - 0,12 = 0,88$.

Si on augmente 10 € de 25 %, on obtient 5 × 1,25 = 6,25 €.

Quand il y a plusieurs taux d'évolution successifs, on les multiplie entre eux pour connaître l'évolution globale.

- D'une part, $a^1 \times a^{-1} = a^{1-1} = a^0$;
- D'autre part, $a^1 \times a^{-1} = a \times \frac{1}{a} = 1$.

Ces deux nombres sont égaux.

^{1.} On calcule $a^1 \times a^{-1}$ de deux manières différentes :

Exemple Pour une hausse de 25 % suivie d'une baisse de 12 %, le coefficient multiplicateur global est

$$1,25 \times 0,88 = 1,1$$

ce qui correspond à une hausse de 10% (car 1,1 = $1 + \frac{10}{100}$).

Quand il y a plusieurs évolutions successives, le **taux d'évolution moyen** est le taux d'évolution qui aurait été appliqué à chaque évolution **si toutes les évolutions avaient été les mêmes**.

Exemple On considère une hausse de 25 %, suivie d'une baisse de 12 %, suivie d'une baisse de 4 %, puis d'une hausse de 8 %.

Le coefficient multiplicateur global est alors de $1,25 \times 0,88 \times 0,96 \times 1,08 = 1,14048$.

S'il y avait quatre évolutions identiques successives de t%, ça aurait fait

$$\left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) \times \left(1 + \frac{t}{100}\right) = 1,14048$$

soit $\left(1 + \frac{t}{100}\right)^4 = 1,14048$.

On élève tout à la puissance $\frac{1}{4}$:

$$\left(\left(1 + \frac{t}{100} \right)^4 \right)^{1/4} = 1,14048^{1/4}$$

Or
$$\left(\left(1 + \frac{t}{100} \right)^4 \right)^{1/4} = \left(1 + \frac{t}{100} \right)^{4 \times \frac{1}{4}} = \left(1 + \frac{t}{100} \right)^1 = 1 + \frac{t}{100}$$

Finalement $1 + \frac{t}{100} = 1,14048^{1/4} \approx 1,0334$ et on trouve t facilement : il s'agit d'une augmentation moyenne de 3,34%.

Récapitulatif Pour n évolutions successives avec un taux d'évolution global T, le taux moyen T_m se calcule par

$$1 + \frac{T_m}{100} = \left(1 + \frac{T}{100}\right)^{1/n}$$

2 Fonctions exponentielles

2.1 Définition

Soit a > 0. La fonction exponentielle de base a est la fonction f définie par $f(x) = a^x$ pour tout $x \in \mathbb{R}$.

Regardons l'évolution d'une fonction exponentielle de base a pour quelques valeurs de a.

La fonction exponentielle de base a = 2 est définie pour tout x par $f(x) = 2^x$, et

•
$$f(-3) = 2^{-3} = 0.125$$
;

• $f(1) = 2^1 = 2$;

•
$$f(-2) = 2^{-2} = 0.25$$
;

• $f(2) = 2^2 = 4$;

•
$$f(-1) = 2^{-1} = 0.5$$
;

• $f(3) = 2^3 = 8$;

•
$$f(0) = 2^0 = 1$$
;

• $f(4) = 2^4 = 16$;

La fonction exponentielle de base 2 est une fonction **croissante** (avec une croissante très rapide : on a par exemple $2^{16} = 65536$).

La fonction exponentielle de base a = 0.5 est définie pour tout x par $g(x) = 0.5^x$, et

•
$$g(-4) = 0.5^{-4} = 16$$
;

•
$$g(-3) = 0.5^{-3} = 8$$
;

•
$$g(-2) = 0.5^{-2} = 4$$
;

•
$$g(-1) = 0.5^{-1} = 2$$
;

•
$$g(0) = 0.5^0 = 1$$
;

•
$$g(1) = 0.5^1 = 0.5$$
;

•
$$g(2) = 0.5^2 = 0.25$$
;

•
$$g(3) = 0.5^3 = 0.125$$
;

La fonction exponentielle de base 0,5 est **décroissante**.

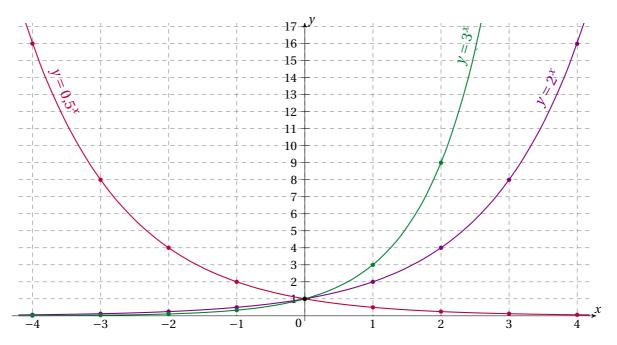
2.2 Propriétés et courbe représentative

Propriétés Si a > 1, alors $f(x) = a^x$ est **croissante** sur \mathbb{R} . Si 0 < a < 1, alors $f(x) = a^x$ est **décroissante** sur \mathbb{R} . On a toujours f(0) = 1 et f(1) = a.

Reprenons les exemples du paragraphe précédent. On peut faire un tableau de valeurs :

Х	-4	-3	-2	-1	0	1	2	3	4
$f(x) = 2^x$	0,0625	0,125	0,25	0,5	1	2	4	8	16
$g(x) = 0.5^x$	16	8	4	2	1	0,5	0,25	0,125	0,0625

et tracer la courbe représentative.



(on a également tracé la courbe représentative de la fonction $h(x) = 3^x$ à titre comparatif).

Propriétés Les courbes représentatives des fonctions $f(x) = a^x$ et $g(x) = \left(\frac{1}{a}\right)^x$ sont symétriques par rapport à l'axe des ordonnées.

Si a > 1 et pour x > 0, plus a est grand, plus la courbe représentative de la fonction exponentielle de base a croît rapidement.

À l'inverse, si 0 < a < 1 et pour x < 0, plus a est proche de 0, plus la courbe représentative de la fonction exponentielle de base a décroît rapidement.

